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Motivation

In climate simulations, small-scale processes shape ocean
dynamics but remain computationally expensive to resolve

directly. For this reason, their contributions are commonly
approximated using empirical parameterizations, which
lead to significant errors in long-term projections.

Model and parameterization

Example

A 1-year long simulation of Black Sea physics (CPU time):

• ≈ 14.5 years at high-resolution (~300m);

• ≈ 0.5 years at low-resolution (-3km).

• The mid-latitude ocean is approximated with a 2-layers
quasigeostrophic model (from PyQG). There exist two
flow regimes: eddy- and jet-driven flows.
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where the missing contributions 𝐒 are approximated

accurately and efficiently using a parameterization.

• The quasigeostrophic equation solved is:

𝛛𝐮
𝛛𝐭 + 𝐮 ⋅ 𝛁 𝐮 = 𝐅 + 𝐃 + 𝐒

Figure 1: Illustration of the 2-layers quasigeostrophic model. The eddy-driven flow corresponds to

a chaotic flow with lots of swirls, whereas for the jet-driven regime, the flow is more structured,
and the fluid is moving in one main direction.

Factorized Fourier Neural Operator (FFNO)

Figure 2: Illustration of the Factorized Fourier Neural Operator (Tran, Alasdair, et al. 2021)
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INPUT FREQUENCY 

SPECTRA

OUTPUT FREQUENCY 

SPECTRA

We want to explore FFNO based parameterizations!

Figure 5: Energy spectrum comparison of different flow quantities in a jets-driven flow simulation.

The closer a spectra is to the high-resolution spectra (blue) the better. FFNO* (fine-tuned FFNO)
matches the best the high-resolution spectra except for the available potential energy flux (APEflux).
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• Parameterization robustness is assessed by conducting a
simulation and verifying the accurate correction of spectra

for various physical quantities.
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Figure 3: Coefficient of determination 𝑅! results for neural network parameterizations show that

FFNO is the only one generalizing on both layers, in contrast to FCNN, U-NET, and the original FNO
architecture (line 1). When trained on both types of flow, only FNOs achieve positive scores in both

layers, demonstrating their superior performance (line 2).

• The parameterization accuracy is assessed by computing
the coefficient of determination 𝑅B ∈ [−∞, 1] on both layers.

A value closer to 1 indicates better approximation of 𝐒.
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• The parameterization efficiency is evaluated by comparing
the speed-up against a high-resolution simulation.
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Figure 4: Computational time for a 10-year jets-driven flow scenario is simulated. The higher the

speedup (>1) compared to the high-resolution simulation, the better. FFNO is inefficient in contrast
to other architectures.
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