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Motivation

In climate simulations, small-scale processes shape ocean
dynamics but remain computationally expensive to resolve
directly. For this reason, their contributions are commonly
approximated using empirical parameterizations, which

lead to significant errors in long-term projections.

Example
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Results

« The parameterization accuracy is assessed by computing

the coefficient of determination R? € [—o0, 1] on both layers.

A value closer to 1 indicates better approximation of S.

A 1-year long simulation of Black Sea physics (CPU time):

« =145 years at high-resolution (~300m);

» = 0.5 years at low-resolution (-3km).

Model and parameterization

 The mid-latitude ocean is approximated with a 2-layers
quasigeostrophic model (from PyQG). There exist two

flow regimes: eddy- and jet-driven flows.
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Figure 1: Illustration of the 2-layers quasigeostrophic model. The eddy-driven flow corresponds to
a chaotic flow with lots of swirls, whereas for the jet-driven regime, the flow is more structured,

and the fluid is moving in one main direction.

« The quasigeostrophic equation solved is:

ou W-V)u=F+D+S
atu u u =

where the missing contributions S are approximated

accurately and efficiently using a parameterization.

Factorized Fourier Neural Operator (FFNO)

We want to explore FFNO based parameterizations!
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Figure 2: Illustration of the Factorized Fourier Neural Operator (Tran, Alasdair, et al. 2021)
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Figure 3: Coefficient of determination R? results for neural network parameterizations show that
FFNO is the only one generalizing on both layers, in contrast to FCNN, U-NET, and the original FNO
architecture (line 1). When trained on both types of flow, only FNOs achieve positive scores in both

layers, demonstrating their superior performance (line 2).

« The parameterization efficiency is evaluated by comparing

the speed-up against a high-resolution simulation.
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Figure 4: Computational time for a 10-year jets-driven flow scenario is simulated. The higher the
speedup (>1) compared to the high-resolution simulation, the better. FFNO is inefficient in contrast

to other architectures.

- Parameterization robustness is assessed by conducting a
simulation and verifying the accurate correction of spectra

for various physical quantities.
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Figure 5: Energy spectrum comparison of different flow quantities in a jets-driven flow simulation.
The closer a spectra is to the high-resolution spectra (blue) the better. FFNO* (fine-tuned FFNO)

matches the best the high-resolution spectra except for the available potential energy flux (APEflux).



